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Abstract. The properties of vibrational localized (breathers) and traveling (anharmonic phonons) waves
are discussed in an infinite, one-dimensional, monoatomic crystal for the Fermi-Pasta-Ulam and Frenkel-
Kontorova models. The shooting and finite difference schemes have been implemented to reckon the dis-
placement fields of breathers and anharmonic phonons, respectively. These tools provide localized and
traveling waves proving to be indefinitely stable in simulations carried out by solving the equations of
motion. The emphasis is laid on the role of the cubic and quartic terms of the anharmonic potential which
turn out to oppose and to shore up the restoring force, respectively. The case of vibrational modes arising
in an anharmonic crystal subject to a soft phonon induced instability is also addressed.

PACS. 63.20.Pw Localized modes – 63.20.Ry Anharmonic lattice modes

1 Introduction

The dynamics of anharmonic lattices has enjoyed a bud-
ding interest for the last decade because of its bear-
ing on heat transport, energy relaxation towards ther-
mal equilibrium and various structural or magnetic
instabilities in solid matter including DNA [1–5]. Whereas
the dynamics of perfectly periodic, harmonic crystals is
completely accounted for by phonons, that of an an-
harmonic lattice comprises furthermore localized vibra-
tions such as breathers [6] and three kinds of traveling
waves, namely moving breathers [7], solitons [8,9] and
time-periodic waves [3,10–12] which are the anharmonic
counterpart of phonons.

Most of results regarding breathers have been ob-
tained within the quasidiscreteness approach (QDA) [13]
including the rotating wave approximation (RWA) [14]
as a particular case and the uncoupled oscillator limit
(UOL) [15,16]. In QDA and RWA the vibrational field
of the breather is worked out from a truncated perturba-
tion expansion. The results are believed to be reliable in
case of weak anharmonicity. In UOL they are obtained
by switching on continuously the coupling within a fi-
nite sequence of initially uncoupled oscillators. The con-
tinuation process is likely to break down for strong cou-
pling. As the interatomic potential involves necessarily
an on-site contribution, its harmonic limit cannot sustain
any acoustic phonon branch due to the lack of continu-
ous translational symmetry. Furthermore as UOL based
calculations deal with a finite crystal, conspicuous finite-
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size effects have been reported [17]. Therefore simula-
tions carried out by solving the equations of motion in
large crystals with initial conditions inferred from QDA,
RWA or UOL always produce vibrational fields decaying
in the long term into phonon-like oscillating tails named
as nanopterons [6] so that the existence of such excitations
remains questionable.

Time-periodic traveling waves have been studied much
less than breathers and solitons in anharmonic lattices. In
the continuum limit the Korteweg-de Vries equation was
shown [18] to sustain cnoidal waves. Such modes arise also
in the integrable Toda model [19]. UOL has been applied
to find anharmonic phonons by starting from a sequence of
phase-shifted uncoupled oscillators [3,10]. They were seen
to produce nanopterons in simulations as in the case of
breathers. At last it is worth mentioning an attempt made
in the Fermi-Pasta-Ulam and Lennard-Jones lattices that
has provided accurate results [11] for nonlinear periodic
waves in an infinite crystal.

Breathers and standing waves have been studied
in infinite, anharmonic lattices by using the shooting
method [12,20]. The successful treatment of the infinite
system has been secured by taking advantage of the exact
knowledge of the asymptotic behavior of the displacement
field at infinite distances. The method will be extended
here to the Fermi-Pasta-Ulam (FPU) potential including
a cubic term in order to investigate how it conditions
the existence of breathers. The shooting method will be
applied also to the Frenkel-Kontorova (FK) potential to
which a quartic term has been added because the latter
shows up a prerequisite for breathers to arise similarly
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to what has already been shown for solitons [21]. The
FPU [22] and FK [23] potentials have been extensively
studied in various issues connected with non-linear phe-
nomena, regarding in particular energy relaxation [24] in
solids, solitons [9,25] and breathers [26]. The calculational
scheme devised for solitons [21,27] and consisting of solv-
ing a non-linear differential equation involving advanced
and retarded terms will be adapted, as already done by
previous authors [11], to study the properties of anhar-
monic phonons in the FK model. The tools developed here
have enabled us to investigate breathers and nonlinear pe-
riodic waves in presence of a soft phonon. Both localized
and propagating modes of this work stand out as generic
excitations in infinite, non-linear lattices, as far as they
appear to be stable in simulations carried out by solving
the equations of motion. Likewise they keep indefinitely
the same profile without radiating phonons.

The outline is as follows: Sections 2 and 3 deal with
the study of the FPU and FK models, respectively whereas
Section 4 is concerned with the unstable crystal case.

2 FPU breathers

An infinite, monoatomic chain is considered. There is a
single coordinate per atom ui designating the displace-
ment at site i with respect to equibrium. The atoms of
mass unity are coupled through the FPU pair potential
W1(ui − ui+1) written as

W1(x) =
x2

2
+ λ

x3

3
+
x4

4
,

where xi = ui − ui+1 and λ ∈ R is taken as a dispos-
able parameter. As stressed elsewhere [21,27], the phonon
dispersion associated with the harmonic limit of W1 con-
ditions strongly the properties of breathers

ωφ(k) = ωM sin
(
k

2

)
, (1)

where ωφ and k ∈ [0, π] stand for the acoustic phonon
frequency and wave-vector, respectively, and ωM = 2 is
the largest phonon frequency. The equations of motion
read

üi(t) =
dW1

dx
(xi−1)− dW1

dx
(xi), i ∈ Z. (2)

A breather-like solution of equation (2) comprises the in-
finite sequence {ui(t)}, characterised by

ui(t+ T ) = ui(t), ui→±∞(t)→ u±∞, ∀t, (3)

where T is the vibrational period and u±∞ ∈ R are con-
stant. The vibrational field decays exponentially [20] at
infinite distances

(ui→±∞(t)− u±∞) ∝ r±i sin(ωt), ∀t,
ω2 = 2− r − r−1,

(4)
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Fig. 1. Plots of {ui=−3,..3(t)} for an odd breather sustained
by W1 at λ = 1 and ω = 2ωM = 4.

where |r| < 1 and ω = 2π
T is the vibrational frequency. It

ensues from equation (4) that ω > ωM .
We focus on breathers having all atoms vibrating in

phase, albeit with different amplitudes, because this is
consistent with the time-behavior of ui→±∞(t) implied by
equation (4). Hence all velocities u̇i(t) should vanish si-
multaneously. Then as neither t nor u̇i appear explicitly
in equation (2), it comes ui(t) = ui(T2 − t), if u̇i(T4 ) =
0,∀i. Therefore it suffices to confine oneself to the range
t ∈ [−T4 ,

T
4 ]. In an infinite lattice, vibrational patterns

such that ui(t) = −u−i(±t) and ui(t) = −u−i−1(±t),
referred [14,28] to as odd and even, are consistent with
equation (2) for any pair potential being a function of
ui−ui+1. Besides the solution of equation (2) depends on
a single parameter ω.

The shooting method applied to solve equation (2) has
been detailed elsewhere [12,20]. It amounts to solving a
system of transcendental equations over t ∈

[
0, T4

]
for

the unknown initial displacements and velocities. In the
odd case they read {ui=1,..n=4(0), u̇i=0,..n(0)} and fulfil
the boundary conditions

u0(0) = 0, ui>0(0) = −u−i(0),

u̇i>0(0) = u̇−i(0), u̇i
(
T
4

)
= 0,

u±n±1(t)− u±∞
u±n(t)− u±∞ = r(ω),

(5)

where n = 4 proves big enough so that |u±n(t) −
u±∞| � 1 and r(ω) is provided by equations (4). In the
even case equation (2) have been solved for the unknowns
{ui=0,..n=4(0), u̇i=0,..n(0)} under the conditions

u−1(0) = −u0(0), u̇i

(
±T

4

)
= 0,

un+1(t)− u∞
un(t)− u∞

= r(ω).

The data pictured in Figures 1, 2 have been obtained by
continuation from λ = 0 while increasing λ stepwise up to
the desired λ 6= 0 value as explained elsewhere [12]. The
cubic term λx

3

3 in W1 brings a contribution even versus
x and thence counteracts the restoring force which is it-
self odd. Accordingly too strong a cubic term is believed to
prevent any breather from arising in Toda’s model [29,28].
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Fig. 2. Plots of {ui=0,..3(t)} for an even breather sustained by
W1 at λ = 1 and ω = 2ωM = 4.

This statement has been confirmed here by monitoring the
solution {ui(t)} versus growing λ at fixed ω. Defining the
vibrational amplitude on site i, as ai = |ui(T4 )−ui(0)| and
ai = |ui(T4 )− ui(−T4 )| for the odd and even cases respec-
tively, the ai’s have been plotted versus λ in Figures 3, 4
for two ω values. The breather disappears suddenly for
|λ| > λM with λM = 2.1, 3.6 in Figures 3 and 4 respec-
tively, as the Newton method fails to find any solution
for the unknowns in the vicinity of the assignment associ-
ated with λM . Most of realistic pairwise potentials (Toda,
Born-Mayer-Coulomb, Lennard-Jones and Morse) display
λ < 0 [29]. Nevertheless there is no difference at all be-
tween the λ < 0 and λ > 0 data in Figures 3, 4 because the
λ dependence of W1 entails that ui(λ, t) and −ui(−λ, t)
are both solutions of equation (2).

As all ui(t)’s have been worked out by solving
directly equation (2), they turn out to be exact so-
lutions of the equations of motion valid at any time
so that every simulation carried out in an arbitrarily
large FPU atomic chain with initial conditions given
by {ui(0), u̇i(0)} remains indefinitely stable. It is then
of interest to compare with the results supplied by
other methods. It must be noticed first that UOL can
by no means deal with the FPU model because it has
an acoustic branch. Moreover the vibrational patterns
obtained for breathers by QDA [13] and RWA [14,28] read

ui(t) = ξi + φi cos(ωt), φi ∝ r|i|

where |r| < 1. The QDA and RWA analyses suf-
fer from two shortcomings. First the assumption
ξi = −ξ−i, φi = φ−i made for the odd mode appears to
be inconsistent with equation (2) for λ 6= 0. Furthermore
there is the relationship [13]

ω2 = ω2
M

(
1 +

log(|r|)2

8

)
,

which agrees with the exact result in equation (4) but
for ω → ω+

M . This underscores a basic disagreement with
the harmonic limit whenever the displacement becomes
vanishingly small, i.e. at long distance from the center. It
is thence concluded that QDA and RWA provide a useful
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Fig. 3. Plots of {ai=0,..4(λ)} for an odd FPU breather at ω =
2.57.
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Fig. 4. Plots of {ai=0,..2(λ)} for an even FPU breather at
ω = 4.

approximation of an even breather only in a crystal of
small size and for ω close to ωM , which is confirmed by
conspicuous nanopterons growing in simulations [14,28].

3 FK breathers and nonlinear periodic waves

The pair potential has been chosen here to read

W2(ui, ui+1) =
(ui − ui+1)2 − cos(ui)− cos(ui+1)

2
+λ

(ui − ui+1)4

4
,

where λ ∈ R is taken as a disposable parameter. Actually
all previous authors have assumed λ = 0 but this case
has been confirmed to sustain no soliton in a monoatomic
lattice [21]. It will be shown here to sustain no breather
and no anharmonic phonon either.

3.1 Breathers

Unlike W1 the potential W2 has no continuous trans-
lational symmetry. As its optical phonon and breather
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Fig. 5. Plots of {ui=0,..5(t)} for a breather sustained by W2

at λ = 1 and ω = 4.47.

dispersion relations stem solely from the harmonic limit
of W2, they are independent of λ and read then

ω2
φ(k) = 3− 2 cos(k), ω2 = 3− r − r−1. (6)

Equations (6) imply for the phonon and breather frequen-
cies that ωφ ∈ [ωm = 1, ωM =

√
5], ω 6∈ [ωm, ωM ]. No

breather has been found in the lower gap ω < ωm. This
seems to stem from the infinite crystal size since breathers
have been reported [16,17] to arise in the lower gap in
UOL calculations which can cope only with finite lattices.
The boundary conditions used in UOL which show up very
different from those in equations (3) and UOL taking no
account of the dispersion relations in equations (6) are
likely to be responsible for the different results in UOL
and in this work.

Breathers have then been searched in the upper gap
ω > ωM as solutions of

üi(t) = ui−1 + ui+1 − 2ui − sin(ui)
+λ
(
(ui−1 − ui)3 − (ui − ui+1)3

)
,

(7)

under the conditions in equations (3). Due to
W2(ui, ui+1) = W2(−ui,−ui+1) a solution such that
ui(t) = u−i(t) , ui(t) = −ui(−t) is consistent with
equations (7). Solving equations (7) while using the same
method as for the FPU λ = 0 case yields the vibrational
patterns ui(t) and amplitudes ai(= ui(T4 )) reported in
Figures 5, 6. The breather and phonon frequencies are
checked not to be degenerate as the breather displacement
field vanishes allover the phonon frequency range.

A breather-like solution of equations (7) requires λ &
0.05. It is noteworthy that the same minimum λ-value is
needed for a soliton [21] to arise. This low value indicates
how efficiently the quartic term contributes to building up
a restoring force in both cases.

3.2 Nonlinear periodic waves

A nonlinear periodic wave of vibrational period T and
phase velocity τ−1 (the lattice parameter is set equal to 1)
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Fig. 6. Plots of {ai=0,..5 = |ui(T4 )|} versus ω for a breather
sustained by W2 at λ = 1.
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Fig. 7. Plots of u(t) for nonlinear periodic waves sustained
by W2.

is characterised in an infinite crystal by

ui∈Z(t+ T ) = ui(t) , ui+1(t) = ui(t+ τ) , ∀ t. (8)

The wave-length l, wave-vector k and frequency ω fulfil
lτ = T and kl = ωT = 2π, which results in k = ωτ .
Equation (8) implies τ ≤ T , which assigns the size of the
one-dimensional Brillouin zone k ∈ [0, 2π]. A nonlinear
periodic wave propagating in the infinite FK lattice is ob-
tained as a solution of

ü(t) = u(t− τ) + u(t+ τ)− 2u(t)− sin(u(t))

+λ
(
(u(t− τ) − u(t))3 − (u(t)− u(t+ τ))3

)
.

(9)

A solution u(t) such that u(t) = −u(−t) is con-
sistent with equation (9). Owing to W2(ui, ui+1) =
W2(−ui,−ui+1) equation (9) will be solved under the
boundary conditions

t ∈
[
0, T4

]
, u(0) = 0,

u(t < 0) = −u(−t), u
(
t > T

4

)
= u

(
T
2 − t

)
.

(10)

To solve equation (9) we proceed by combining the finite
difference and Newton methods, as done elsewhere [11,12].
Accordingly the u(t)’s, reported in Figure 7, display the
sine-wave shape, typical of k & π

2 and the profile turns
gradually into a square wave for k . π

2 .
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Fig. 8. Plots of (a, λ) dependent dispersion curves ω(k) for
nonlinear periodic waves sustained by W2.

λ dependent dispersion data ω(k) have been reported
in Figure 8 throughout the Brillouin zone. As expected for
anharmonic excitations, they depend also upon the ampli-
tude a = u(T4 ). There is no solution for k ≤ km ' 0.17.
This feature stands out prominently where dispersion data
have been depicted and km corresponds to the crossing
point of the dispersion curve of anharmonic phonons ω(k)
with that of harmonic ones ωφ(k). km is found to depend
weakly on λ. Thus the condition ω(k) > ωφ(k) is fulfiled
as for W1 [12]. Besides as for breathers and solitons [21],
there is no solution for λ . 0.05 and thence in the usual
λ = 0 case either.

We have checked by simulation that the anharmonic
phonon patterns u(t), computed for W2, prove to be ex-
act and stable solutions of equation (9). To that end we
integrate iteratively over [0, T4 ]

v̈j(t) =
dW
dx

(vj−1(t− τ) − vj(t))

−dW
dx

(vj(t)− vj−1(t+ τ))

for the sequence of unknown functions {vj(t)} taking as
initial conditions vj(0) = vj−1(0), v̇j(0) = v̇j−1(0). The it-
eration is started for v1(t), taking v0(t) = u(t). Note that
the hereabove equation is an ordinary differential equa-
tion with respect to the unknown vj(t) since the previ-
ously determined vj−1(t) plays the role of a known pa-
rameter field. As the iteration number j grows towards
its final value jf � 1, thus mimicking a propagation
over a large crystal comprising jf of unit-cells, the se-
quence vj(t) is found to converge towards u(t) as far as
the error maxt∈[0,tW ] (|vj(t)− u(t)|) remains < 10−6 for
every j = 1, ...jf . By contrast the Brillouin zone bound-
ary anharmonic phonon calculated by RWA has been re-
ported [28] to be unstable in simulations.

4 Unstable systems

It has been shown [30] how nonlinearity can restore dy-
namical stability into a macroscopic, mechanically unsta-
ble system. But a similar conclusion was also noticed to
prevail in the microscopic realm, namely the solid phase
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Fig. 9. Plots of {ai=1,..6 = |ui(T4 )|} versus ω for breathers
sustained by W3.

of rare gases [31] since the second derivative of the inter-
atomic potential is negative at the thermal equilibrium
position. The numerical tools developed here permit to
study this issue on the harmonically unstable FPU poten-
tial W3

W3(x) = −x
2

2
+
x4

4
,

where xi = ui − ui+1. As the phonon branch of W3 is of
imaginary frequency (ω2

φ = 2(cos(k)− 1) < 0⇒ ωφ ∈ C),
it is said to be soft [4]. Because the associated static con-
figuration is not stable, the solid should undergo a struc-
tural change. However it was noticed that the unstable
equilibrium configuration regains some dynamical stabil-
ity in spite of its soft phonon as far as breathers [20] and
solitons [27] can still arise with infinite lifetimes. To get
further insight we have worked out the breathers and an-
harmonic phonons of W3.

The vibrational amplitudes calculated for breathers
have been represented in Figure 9. The comparison with
the results achieved for the stable FPU potential is illumi-
nating. Whereas the amplitude field vanishes for ω < ωM
in the stable case, it remains 6= 0 while ω can decrease
practically down to nought for the unstable potential W3.
Actually |u̇i(0)| decreases with ω and eventually u̇i(t)
changes sign several times over [0, T4 ] for ω . 0.5 while
the amplitudes ai tend toward a limiting value 6= 0.
These results are consistent with those obtained for an-
harmonic phonons which have been pictured in Figure 10.
As a matter of fact the amplitude a decreases for every
k & 0.3π with decreasing frequency ω down to a minimum
value am ' 0.7, depending but weakly on k. Likewise for
ω → 0.3+ the initial velocity |u̇i(0)| decreases so strongly
that u(t) is no longer monotonous over [0, T4 ]. Further-
more no monotonous solution could be found for k < 0.3π.
This can be understood by noticing that for |u(t)| � 1
the restoring force is determined by the harmonic limit
of the potential. But as no restoring force is available in
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case of the unstable potential W3 for small |u(t)|, a large
enough amplitude am must be reached as a prerequisite
for the anharmonic part of the potential to prevail over
the harmonic one, thus giving rise to a finite restoring
force. As this latter grows like |ui(t)−ui+1(t)| which rises
through a maximum at k = π because of ui(t) = −ui+1(t),
the amplitude a tends to decrease with increasing k at
fixed ω > 0.4. By contrast with the stable case character-
ized by a phonon mediated minimum frequency so that
ω(k) ≥ ωφ(k), there appears instead a soft phonon in-
duced minimum amplitude am.

5 Conclusion

The effect of the cubic term on the existence of breathers
has been investigated for the FPU potential. Too large a
cubic term thwarts the arising of any breather because
it cancels the restoring force. Inversely the quartic one
contributes very efficiently to arousing such modes in the
FK model. A minimum value of the quartic term is even
required for every localized and nonlinear periodic wave,
including solitons [21] to arise. Both breathers and anhar-
monic phonons of this work show up as exact solutions
of the equations of motion in an infinite crystal. Finally
it has been shown how a lattice driven to instability by
a soft phonon may still sustain breathers and nonlinear
periodic waves owing to anharmonicity. This statement
conveys a particular significance for solid rare gases and
could also cast some new light on the role of soft phonons
in displacive transitions [4].

One of us (G.H.) is indebted to the French Ministry of Research
and Université Paris 7 for two visiting grants.
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